LM2731 0.6/1.6 MHz Boost Converters With 22V Internal FET Switch in SOT-23

Check for Samples: LM2731

FEATURES
- 22V DMOS FET Switch
- 1.6 MHz (“X”), 0.6 MHz (“Y”) Switching Frequency
- Low $R_{DS(ON)}$ DMOS FET
- Switch Current up to 1.8A
- Wide Input Voltage Range (2.7V–14V)
- Low Shutdown Current (<1 µA)
- 5-Lead SOT-23 Package
- Uses Tiny Capacitors and Inductors
- Cycle-by-Cycle Current Limiting
- Internally Compensated

APPLICATIONS
- White LED Current Source
- PDA’s and Palm-Top Computers
- Digital Cameras
- Portable Phones and Games
- Local Boost Regulator

Typical Application Circuit

DESCRIPTION
The LM2731 switching regulators are current-mode boost converters operating at fixed frequencies of 1.6 MHz (“X” option) and 600 kHz (“Y” option).

The use of SOT-23 package, made possible by the minimal power loss of the internal 1.8A switch, and use of small inductors and capacitors result in the industry’s highest power density. The 22V internal switch makes these solutions perfect for boosting to voltages up to 20V.

These parts have a logic-level shutdown pin that can be used to reduce quiescent current and extend battery life.

Protection is provided through cycle-by-cycle current limiting and thermal shutdown. Internal compensation simplifies design and reduces component count.

Table 1. Switch Frequency

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.6 MHz</td>
<td>0.6 MHz</td>
</tr>
</tbody>
</table>

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

Copyright © 2004–2012, Texas Instruments Incorporated
Figure 1. White LED Flash Application

Figure 2. 5-Lead SOT-23 Package
See Package Number DBV0005A
PIN DESCRIPTIONS

<table>
<thead>
<tr>
<th>Pin</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SW</td>
<td>Drain of the internal FET switch.</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Analog and power ground.</td>
</tr>
<tr>
<td>3</td>
<td>FB</td>
<td>Feedback point that connects to external resistive divider.</td>
</tr>
<tr>
<td>4</td>
<td>SHDN</td>
<td>Shutdown control input. Connect to Vin if the feature is not used.</td>
</tr>
<tr>
<td>5</td>
<td>VIN</td>
<td>Analog and power input.</td>
</tr>
</tbody>
</table>

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Temperature Range</td>
<td>−65°C to +150°C</td>
</tr>
<tr>
<td>Operating Junction Temperature Range</td>
<td>−40°C to +125°C</td>
</tr>
<tr>
<td>Lead Temp. (Soldering, 5 sec.)</td>
<td>300°C</td>
</tr>
<tr>
<td>Power Dissipation (2)</td>
<td>Internally Limited</td>
</tr>
<tr>
<td>FB Pin Voltage</td>
<td>−0.4V to +6V</td>
</tr>
<tr>
<td>SW Pin Voltage</td>
<td>−0.4V to +22V</td>
</tr>
<tr>
<td>Input Supply Voltage</td>
<td>−0.4V to +14.5V</td>
</tr>
<tr>
<td>SHDN Pin Voltage</td>
<td>−0.4V to VIN + 0.3V</td>
</tr>
<tr>
<td>(\theta_JA) (SOT-23-5)</td>
<td>265°C/W</td>
</tr>
<tr>
<td>ESD Rating (3)</td>
<td>Human Body Model</td>
</tr>
<tr>
<td></td>
<td>2 kV</td>
</tr>
</tbody>
</table>

(1) Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Electrical specifications do not apply when operating the device outside of the limits set forth under the operating ratings which specify the intended range of operating conditions.

(2) The maximum power dissipation which can be safely dissipated for any application is a function of the maximum junction temperature, \(T_J(\text{MAX}) = 125°C \), the junction-to-ambient thermal resistance for the SOT-23 package, \(\theta_{JA} = 265°C/W \), and the ambient temperature, \(T_A \). The maximum allowable power dissipation at any ambient temperature for designs using this device can be calculated using the formula:

\[
P(\text{MAX}) = \frac{T_J(\text{MAX}) - T_A}{\theta_{JA}} = \frac{125 - T_A}{265} \]

If power dissipation exceeds the maximum specified above, the internal thermal protection circuitry will protect the device by reducing the output voltage as required to maintain a safe junction temperature.

(3) The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin.
Electrical Characteristics

Limits in standard typeface are for $T_J = 25°C$, and limits in **boldface type** apply over the full operating temperature range ($−40°C \leq T_J \leq +125°C$). Unless otherwise specified: $V_{IN} = 5V$, $V_{SHDN} = 5V$, $I_L = 0A$.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Conditions</th>
<th>Min(1)</th>
<th>Typ(2)</th>
<th>Max(1)</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{IN}</td>
<td>Input Voltage</td>
<td>2.7</td>
<td>14</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>$V_{OUT (MIN)}$ Under Load</td>
<td>$R_L = 43Ω$ X Option(3)</td>
<td>$V_{IN} = 2.7V$</td>
<td>5.4</td>
<td>7</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} = 3.3V$</td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} = 5V$</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_L = 43Ω$ Y Option(3)</td>
<td>$V_{IN} = 2.7V$</td>
<td>6</td>
<td>7.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} = 3.3V$</td>
<td>8.75</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} = 5V$</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_L = 15Ω$ X Option(3)</td>
<td>$V_{IN} = 2.7V$</td>
<td>3.75</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} = 3.3V$</td>
<td>5</td>
<td>6.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} = 5V$</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$R_L = 15Ω$ Y Option(3)</td>
<td>$V_{IN} = 2.7V$</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} = 3.3V$</td>
<td>5.5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$V_{IN} = 5V$</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{SW}</td>
<td>Switch Current Limit</td>
<td></td>
<td>1.8</td>
<td>2</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R_{DS(ON)}$</td>
<td>Switch ON Resistance</td>
<td></td>
<td>260</td>
<td>400</td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td>$I_{SW} = 100 mA$</td>
<td>$V_{IN} = 5V$</td>
<td>500</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$I_{SW} = 100 mA$</td>
<td>$V_{IN} = 3.3V$</td>
<td>450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$SHDN_{TH}$</td>
<td>Shutdown Threshold</td>
<td></td>
<td>1.5</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>Device ON</td>
<td></td>
<td>0.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Device OFF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{SHDN}</td>
<td>Shutdown Pin Bias Current</td>
<td></td>
<td>0</td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>$V_{SHDN} = 0$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{SHDN} = 5V$</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{FB}</td>
<td>Feedback Pin Reference Voltage</td>
<td></td>
<td>1.205</td>
<td>1.230</td>
<td>1.255</td>
</tr>
<tr>
<td></td>
<td>$V_{IN} = 3V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{FB}</td>
<td>Feedback Pin Bias Current</td>
<td></td>
<td></td>
<td>60</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>$V_{FB} = 1.23V$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_Q</td>
<td>Quiescent Current</td>
<td></td>
<td>2</td>
<td>3.0</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>$V_{SHDN} = 5V$, Switching "X"</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{SHDN} = 5V$, Switching "Y"</td>
<td></td>
<td>1.0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$V_{SHDN} = 5V$, Not Switching</td>
<td></td>
<td>400</td>
<td>500</td>
<td>µA</td>
</tr>
<tr>
<td></td>
<td>$V_{SHDN} = 0$</td>
<td></td>
<td>0.024</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>$ΔV_{FB}/ΔV_{IN}$</td>
<td>FB Voltage Line Regulation</td>
<td></td>
<td>2.7V ≤ $V_{IN} ≤ 14V$</td>
<td>0.02</td>
<td>%/V</td>
</tr>
<tr>
<td>F_{SW}</td>
<td>Switching Frequency(5)</td>
<td></td>
<td>"X" Option</td>
<td>1</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Y" Option</td>
<td>0.40</td>
<td>0.60</td>
<td>0.8</td>
</tr>
<tr>
<td>D_{MAX}</td>
<td>Maximum Duty Cycle(5)</td>
<td></td>
<td>"X" Option</td>
<td>78</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td></td>
<td>"Y" Option</td>
<td>88</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>I_L</td>
<td>Switch Leakage</td>
<td></td>
<td>Not Switching $V_{SW} = 5V$</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

(1) Limits are guaranteed by testing, statistical correlation, or design.
(2) Typical values are derived from the mean value of a large quantity of samples tested during characterization and represent the most likely expected value of the parameter at room temperature.
(3) $L = 10 \mu H$, $C_{OUT} = 4.7 \mu F$, duty cycle = maximum
(4) Switch current limit is dependent on duty cycle (see Typical Performance Characteristics).
(5) Guaranteed limits are the same for $V_{IN} = 3.3V$ input.
Typical Performance Characteristics

Unless otherwise specified: $V_{IN} = 5\text{V}$, SHDN pin tied to V_{IN}.

Figure 3. $I_{Q\, V_{IN} \ (Active)}$ vs Temperature - "X"

Figure 4. $I_{Q\, V_{IN} \ (Active)}$ vs Temperature - "Y"

Figure 5. Oscillator Frequency vs Temperature - "X"

Figure 6. Oscillator Frequency vs Temperature - "Y"

Figure 7. Max. Duty Cycle vs Temperature - "X"

Figure 8. Max. Duty Cycle vs Temperature - "Y"
Typical Performance Characteristics (continued)

Unless otherwise specified: $V_{IN} = 5V$, SHDN pin tied to V_{IN}.

Figure 9. I_q vs V_{IN} (Idle) vs Temperature

Figure 10. Feedback Bias Current vs Temperature

Figure 11. Feedback Voltage vs Temperature

Figure 12. $R_{DS(ON)}$ vs Temperature

Figure 13. Current Limit vs Temperature

Figure 14. $R_{DS(ON)}$ vs V_{IN}
Typical Performance Characteristics (continued)

Unless otherwise specified: \(V_{\text{IN}} = 5 \text{V} \), SHDN pin tied to \(V_{\text{IN}} \).

Efficiency vs Load Current - "X"

- \(V_{\text{IN}} = 2.7 \text{V}, V_{\text{OUT}} = 5 \text{V} \)
- \(V_{\text{IN}} = 3.3 \text{V}, V_{\text{OUT}} = 5 \text{V} \)
- \(V_{\text{IN}} = 4.2 \text{V}, V_{\text{OUT}} = 5 \text{V} \)
- \(V_{\text{IN}} = 2.7 \text{V}, V_{\text{OUT}} = 12 \text{V} \)
- \(V_{\text{IN}} = 3.3 \text{V}, V_{\text{OUT}} = 12 \text{V} \)
- \(V_{\text{IN}} = 5 \text{V}, V_{\text{OUT}} = 12 \text{V} \)

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.
Typical Performance Characteristics (continued)

Unless otherwise specified: $V_{IN} = 5V$, SHDN pin tied to V_{IN}.

Efficiency vs Load Current - "X"
$V_{IN} = 5V$, $V_{OUT} = 18V$

Efficiency vs Load Current - "Y"
$V_{IN} = 2.7V$, $V_{OUT} = 5V$

$V_{IN} = 3.3V$, $V_{OUT} = 5V$

$V_{IN} = 2.7V$, $V_{OUT} = 12V$

$V_{IN} = 3.3V$, $V_{OUT} = 12V$
Typical Performance Characteristics (continued)

Unless otherwise specified: $V_{IN} = 5V$, SHDN pin tied to V_{IN}.

Efficiency vs Load Current - "Y"

$V_{IN} = 5V$, $V_{OUT} = 12V$

![Efficiency vs Load Current](image)

BLOCK DIAGRAM

![Block Diagram](image)
THEORY OF OPERATION

The LM2731 is a switching converter IC that operates at a fixed frequency (0.6 or 1.6 MHz) for fast transient response over a wide input voltage range and incorporates pulse-by-pulse current limiting protection. Because this is current mode control, a 33 mΩ sense resistor in series with the switch FET is used to provide a voltage (which is proportional to the FET current) to both the input of the pulse width modulation (PWM) comparator and the current limit amplifier.

At the beginning of each cycle, the S-R latch turns on the FET. As the current through the FET increases, a voltage (proportional to this current) is summed with the ramp coming from the ramp generator and then fed into the input of the PWM comparator. When this voltage exceeds the voltage on the other input (coming from the Gm amplifier), the latch resets and turns the FET off. Since the signal coming from the Gm amplifier is derived from the feedback (which samples the voltage at the output), the action of the PWM comparator constantly sets the correct peak current through the FET to keep the output voltage in regulation.

Q1 and Q2 along with R3 - R6 form a bandgap voltage reference used by the IC to hold the output in regulation. The currents flowing through Q1 and Q2 will be equal, and the feedback loop will adjust the regulated output to maintain this. Because of this, the regulated output is always maintained at a voltage level equal to the voltage at the FB node "multiplied up" by the ratio of the output resistive divider.

The current limit comparator feeds directly into the flip-flop that drives the switch FET. If the FET current reaches the limit threshold, the FET is turned off and the cycle terminated until the next clock pulse. The current limit input terminates the pulse regardless of the status of the output of the PWM comparator.

Application Hints

SELECTING THE EXTERNAL CAPACITORS

The best capacitors for use with the LM2731 are multi-layer ceramic capacitors. They have the lowest ESR (equivalent series resistance) and highest resonance frequency which makes them optimum for use with high frequency switching converters.

When selecting a ceramic capacitor, only X5R and X7R dielectric types should be used. Other types such as Z5U and Y5F have such severe loss of capacitance due to effects of temperature variation and applied voltage, they may provide as little as 20% of rated capacitance in many typical applications. Always consult capacitor manufacturer’s data curves before selecting a capacitor. High-quality ceramic capacitors can be obtained from Taiyo-Yuden, AVX, and Murata.

SELECTING THE OUTPUT CAPACITOR

A single ceramic capacitor of value 4.7 µF to 10 µF will provide sufficient output capacitance for most applications. If larger amounts of capacitance are desired for improved line support and transient response, tantalum capacitors can be used. Aluminum electrolytics with ultra low ESR such as Sanyo Oscon can be used, but are usually prohibitively expensive. Typical AI electrolytic capacitors are not suitable for switching frequencies above 500 kHz due to significant ringing and temperature rise due to self-heating from ripple current. An output capacitor with excessive ESR can also reduce phase margin and cause instability.

In general, if electrolytics are used, it is recommended that they be paralleled with ceramic capacitors to reduce ringing, switching losses, and output voltage ripple.

SELECTING THE INPUT CAPACITOR

An input capacitor is required to serve as an energy reservoir for the current which must flow into the coil each time the switch turns ON. This capacitor must have extremely low ESR, so ceramic is the best choice. We recommend a nominal value of 2.2 µF, but larger values can be used. Since this capacitor reduces the amount of voltage ripple seen at the input pin, it also reduces the amount of EMI passed back along that line to other circuitry.
FEED-FORWARD COMPENSATION

Although internally compensated, the feed-forward capacitor \(C_f \) is required for stability (see Figure 29). Adding this capacitor puts a zero in the loop response of the converter. The recommended frequency for the zero \(f_z \) should be approximately 6 kHz. \(C_f \) can be calculated using the formula:

\[
C_f = \frac{1}{(2 \times \pi \times R_1 \times f_z)}
\]

SELECTING DIODES

The external diode used in the typical application should be a Schottky diode. A 20V diode such as the MBR0520 is recommended.

The MBR05XX series of diodes are designed to handle a maximum average current of 0.5A. For applications exceeding 0.5A average but less than 1A, a Microsemi UPS5817 can be used.

LAYOUT HINTS

High frequency switching regulators require very careful layout of components in order to get stable operation and low noise. All components must be as close as possible to the LM2731 device. It is recommended that a 4-layer PCB be used so that internal ground planes are available.

As an example, a recommended layout of components is shown:

![Figure 28. Recommended PCB Component Layout](image)

Some additional guidelines to be observed:

1. Keep the path between \(L_1, D_1, \) and \(C_2 \) extremely short. Parasitic trace inductance in series with \(D_1 \) and \(C_2 \) will increase noise and ringing.
2. The feedback components \(R_1, R_2 \) and \(C_F \) must be kept close to the FB pin of U1 to prevent noise injection on the FB pin trace.
3. If internal ground planes are available (recommended) use vias to connect directly to ground at pin 2 of U1, as well as the negative sides of capacitors \(C_1 \) and \(C_2 \).

SETTING THE OUTPUT VOLTAGE

The output voltage is set using the external resistors \(R_1 \) and \(R_2 \) (see Figure 29). A minimum value of 13.3 k\(\Omega \) is recommended for \(R_2 \) to establish a divider current of approximately 92 \(\mu \)A. \(R_1 \) is calculated using the formula:

\[
R_1 = R_2 \times (V_{OUT}/1.23 - 1)
\]

(2)
SWITCHING FREQUENCY

The LM2731 is provided with two switching frequencies: the “X” version is typically 1.6 MHz, while the “Y” version is typically 600 kHz. The best frequency for a specific application must be determined based on the trade-offs involved:

Higher switching frequency means the inductors and capacitors can be made smaller and cheaper for a given output voltage and current. The down side is that efficiency is slightly lower because the fixed switching losses occur more frequently and become a larger percentage of total power loss. EMI is typically worse at higher switching frequencies because more EMI energy will be seen in the higher frequency spectrum where most circuits are more sensitive to such interference.

Figure 29. Basic Application Circuit

DUTY CYCLE

The maximum duty cycle of the switching regulator determines the maximum boost ratio of output-to-input voltage that the converter can attain in continuous mode of operation. The duty cycle for a given boost application is defined as:

\[
\text{Duty Cycle} = \frac{V_{\text{OUT}} + V_{\text{DIODE}} - V_{\text{IN}}}{V_{\text{OUT}} + V_{\text{DIODE}} - V_{\text{SW}}}
\]

This applies for continuous mode operation.

INDUCTANCE VALUE

The first question we are usually asked is: “How small can I make the inductor?” (because they are the largest sized component and usually the most costly). The answer is not simple and involves trade-offs in performance. Larger inductors mean less inductor ripple current, which typically means less output voltage ripple (for a given size of output capacitor). Larger inductors also mean more load power can be delivered because the energy stored during each switching cycle is:

\[
E = \frac{1}{2} L (I_p)^2
\]

Where “I_p” is the peak inductor current. An important point to observe is that the LM2731 will limit its switch current based on peak current. This means that since I_p(max) is fixed, increasing L will increase the maximum amount of power available to the load. Conversely, using too little inductance may limit the amount of load current which can be drawn from the output.

Best performance is usually obtained when the converter is operated in “continuous” mode at the load current range of interest, typically giving better load regulation and less output ripple. Continuous operation is defined as not allowing the inductor current to drop to zero during the cycle. It should be noted that all boost converters shift over to discontinuous operation as the output load is reduced far enough, but a larger inductor stays “continuous” over a wider load current range.

To better understand these trade-offs, a typical application circuit (5V to 12V boost with a 10 µH inductor) will be analyzed. We will assume:

\[
V_{\text{IN}} = 5V, V_{\text{OUT}} = 12V, V_{\text{DIODE}} = 0.5V, V_{\text{SW}} = 0.5V
\]

Since the frequency is 1.6 MHz (nominal), the period is approximately 0.625 µs. The duty cycle will be 62.5%, which means the ON time of the switch is 0.390 µs. It should be noted that when the switch is ON, the voltage across the inductor is approximately 4.5V.
Using the equation:

\[V = L \left(\frac{di}{dt} \right) \]

We can then calculate the \(\frac{di}{dt} \) rate of the inductor which is found to be 0.45 A/\(\mu \)s during the ON time. Using these facts, we can then show what the inductor current will look like during operation:

\[\text{Diagram showing inductor current} \]

During the 0.390 \(\mu \)s ON time, the inductor current ramps up 0.176A and ramps down an equal amount during the OFF time. This is defined as the inductor “ripple current”. It can also be seen that if the load current drops to about 33 mA, the inductor current will begin touching the zero axis which means it will be in discontinuous mode. A similar analysis can be performed on any boost converter, to make sure the ripple current is reasonable and continuous operation will be maintained at the typical load current values.

MAXIMUM SWITCH CURRENT

The maximum FET switch current available before the current limiter cuts in is dependent on duty cycle of the application. This is illustrated in the graphs below which show typical values of switch current for both the "X" and "Y" versions as a function of effective (actual) duty cycle:

\[\text{Diagram showing switch current limit vs duty cycle} \]
CALCULATING LOAD CURRENT

As shown in the figure which depicts inductor current, the load current is related to the average inductor current by the relation:

\[I_{\text{LOAD}} = I_{\text{IND}}(\text{AVG}) \times (1 - \text{DC}) \] \hspace{1cm} (7)

Where "DC" is the duty cycle of the application. The switch current can be found by:

\[I_{\text{SW}} = I_{\text{IND}}(\text{AVG}) + \frac{1}{2} \left(I_{\text{RIPPLE}} \right) \] \hspace{1cm} (8)

Inductor ripple current is dependent on inductance, duty cycle, input voltage and frequency:

\[I_{\text{RIPPLE}} = \text{DC} \times \frac{(V_{\text{IN}} - V_{\text{SW}})}{(f \times L)} \] \hspace{1cm} (9)

combining all terms, we can develop an expression which allows the maximum available load current to be calculated:

\[I_{\text{LOAD}}(\text{max}) = (1 - \text{DC}) \times \left(I_{\text{SW}}(\text{max}) - \text{DC} \times (V_{\text{IN}} - V_{\text{SW}}) \right) \] \hspace{1cm} (10)

The equation shown to calculate maximum load current takes into account the losses in the inductor or turn-OFF switching losses of the FET and diode. For actual load current in typical applications, we took bench data for various input and output voltages for both the "X" and "Y" versions of the LM2731 and displayed the maximum load current available for a typical device in graph form:

![Figure 33. Max. Load Current (typ) vs V_IN - "X"

![Figure 34. Max. Load Current (typ) vs V_IN - "Y"]
DESIGN PARAMETERS V_{SW} AND I_{SW}

The value of the FET "ON" voltage (referred to as V_{SW} in the equations) is dependent on load current. A good approximation can be obtained by multiplying the "ON Resistance" of the FET times the average inductor current.

FET on resistance increases at V_{IN} values below 5V, since the internal N-FET has less gate voltage in this input voltage range (see Typical Performance Characteristics curves). Above $V_{IN} = 5V$, the FET gate voltage is internally clamped to 5V.

The maximum peak switch current the device can deliver is dependent on duty cycle. For higher duty cycles, see Typical Performance Characteristics curves.

THERMAL CONSIDERATIONS

At higher duty cycles, the increased ON time of the FET means the maximum output current will be determined by power dissipation within the LM2731 FET switch. The switch power dissipation from ON-state conduction is calculated by:

$$P_{SW} = DC \times I_{IND}(AVE)^2 \times R_{DS(ON)}$$ (11)

There will be some switching losses as well, so some derating needs to be applied when calculating IC power dissipation.

INDUCTOR SUPPLIERS

Recommended suppliers of inductors for this product include, but are not limited to Sumida, Coilcraft, Panasonic, TDK and Murata. When selecting an inductor, make certain that the continuous current rating is high enough to avoid saturation at peak currents. A suitable core type must be used to minimize core (switching) losses, and wire power losses must be considered when selecting the current rating.

SHUTDOWN PIN OPERATION

The device is turned off by pulling the shutdown pin low. If this function is not going to be used, the pin should be tied directly to V_{IN}. If the SHDN function will be needed, a pull-up resistor must be used to V_{IN} (approximately 50k-100kΩ recommended). The SHDN pin must not be left unterminated.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer’s risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audio</td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td>Amplifiers</td>
<td>www.amplifier.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>www.dataconverter.ti.com</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.dlp.com</td>
</tr>
<tr>
<td>DSP</td>
<td>www.dsp.ti.com</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
</tr>
<tr>
<td>Interface</td>
<td>www.interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>www.logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>www.power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>www.microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-rfid.com</td>
</tr>
<tr>
<td>OMAP Applications Processors</td>
<td>www.ti.com/omap</td>
</tr>
<tr>
<td>Wireless Connectivity</td>
<td>www.ti.com/wirelessconnectivity</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2013, Texas Instruments Incorporated